简要介绍:
陈迟晓,复旦大学副研究员、上海市青年科技启明星。2010年,2015年分别获得复旦大学微电子学士和博士学位,本科期间在美国UC Davis大学交流一年,攻读博士期间获得ISSCC STGA奖,复旦大学优秀博士研究奖。2016—2018年,在美国华盛顿大学电子工程系的开展博士后研究。2019年起,加入复旦大学工程与应用技术研究院、专用集成电路国家重点实验室。2021年,转入复旦大学芯片与系统前沿技术研究院。主持国家自然科学基金委面上项目等。主要研究领域包括面向AI芯片的算法-电路-架构协同设计、感存算一体电路与架构、数模混合集成电路及开源EDA方法,Chiplet异质异构集成。以第一、通信作者发表多篇集成电路设计领域论文,包括DAC、ESSCIRC、ASP-DAC、ISCAS、GLSVLSI、MWSCAS、AICAS、IEEE TCAS-I/II、IEEE JETCAS等。教科研研之余积极推动半导体领域科普,是知名半导体公众号“矽说”的共同创始人与主笔。
代表成果:
[1] B. Yu, C. Chen, et al., “A 14-bit 200-MS/s time-interleaved ADC with sample-time error detection and cancelation,” IEEE Asian Solid-State Circuits Conference (ASSCC) 2011, Jeju, 2011, pp. 349-352.
[2] C. Chen, et al., “A low-offset calibration-free comparator with a mismatch-suppressed dynamic preamplifier,” 2014 IEEE International Symposium on Circuits and Systems (ISCAS), Melbourne VIC,2014, pp.2361-2364.
[3] C. Chen, et al., “An ARMA-Model-Based NTF Estimation on Continuous-Time Sigma-Delta
Modulators,” in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 62, no. 8, pp. 721-725, Aug. 2015.
[4] C. Chen, et al., “OCEAN: An on-chip incremental-learning enhanced processor with gated recurrent neural network accelerators,” IEEE European Solid State Circuits Conference (ESSCIRC), Leuven, 2017, pp. 259-262.
[5] C. Chen, et al., “iFPNA: A Flexible and Efficient Deep Neural Network Accelerator with a
Programmable Data Flow Engine in 28nm CMOS,” IEEE 44th European Solid State Circuits
Conference (ESSCIRC), Dresden, 2018, pp.170-173.
[6] C. Chen, et al., “Exploring the Programmability for Deep Learning Processors: from Architecture to Tensorization,” ACM/ESDA/IEEE Design Automation Conference (DAC), San Francisco, CA, 2018, pp.1-6.
[7] A. Wang, C. Chen and C. R. Shi, “A 9-bit Resistor-Based All-Digital Temperature Sensor with a SAR Quantization Embedded Differential Low-Pass Filter in 65nm CMOS Consuming 57pJ with a 2.5 us Conversion Time”, Custom Integrated Circuit Conference (CICC 2019), Austin, TX, April 2019.
[8] T. Zhang, Y. Cao, S. Zhang,C. Chen, F. Ye and J. Ren, “Machine Learning Based Prior-Knowledge-Free Calibration for Split Pipelined-SAR ADCs with Open-Loop Amplifiers Achieving 93.7-dB SFDR”, ESSCIRC 2019, Krakow pp.189-192.
[9] H. Zhu, C. Chen, et al., “A Communication-Aware DNN Accelerator on ImageNet Using in-Memory Entry-Counting Based Algorithm-Circuit-Architecture Co-Design in 65nm CMOS,” in IEEE Journal on Emerging and Selected Topics in Circuits and System, vol. 10, no. 3, pp. 283-294, Sept. 2020.
[10] B. Jiao, et al., and C. Chen.“Computing Utilization Enhancement for Chiplet-based Homogeneous Processing-in-Memory Deep Learning Processors”, ACM Great Lakes Symposium on VLSI (GLSVLSI),2021.